时间:2019-06-03编辑:相形
气溶胶简介
气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001~100μm,分散介质为气体。液体气溶胶通常称为雾,固体气溶胶通常称为雾烟。
天空中的云、雾、尘埃,工业上和运输业上用的锅炉和各种发动机里未燃尽的燃料所形成的烟,采矿、采石场磨材和粮食加工时所形成的固体粉尘,人造的掩蔽烟幕和毒烟等都是气溶胶的具体实例。
气溶胶的消除,主要靠大气的降水、小粒子间的碰并、凝聚、聚合和沉降过程。
气溶胶的化学组成
气溶胶的化学组成十分复杂,它含有各种微量金属、无机氧化物、硫酸盐、硝酸盐和含氧有机化合物等。
由于来源不同,形成过程也不同,故其成分不一,特别是城市大气受污染源的影响,气溶胶的成分变动较大。但是非城市大气气溶胶的成分比较稳定,大体上与地区的土壤成分有关。
大气中二氧化硫转化形成的硫酸盐,是气溶胶的主要成分之一。其转化过程尚未完全明白,已知二氧化硫可在均相条件下,或在水滴、碳颗粒和有机物颗粒表面等多相条件下转化成三氧化硫,再与水反应生成硫酸,并和金属氧化物的微尘反应而生成硫酸盐。
硫是气溶胶内最重要的元素,其含量能反映污染物的全球性迁移、传输和分布的状况。
气溶胶中硝酸盐和有机物的形成机制,尚待研究。气溶胶中有铵离子存在,能与硫酸根离子和硝酸根离子生成铵盐。
至于气溶胶中的有机物,更是许多种类有机物的复杂混合物,其中包括稀烃、烷烃、芳烃、多环芳烃、醛、酮、酸、醌、酯,以及有机氮化物和有机硫化物等。
气溶胶来源于土壤的各种元素,其含量在地区之间差别不大;而来源于工业区的各种元素,就有较大的地区差别。
气溶胶是大气中极其重要的组成部分,它不仅直接影响人类的健康,还能增加大气的化学反应,降低能见度,增加降水、成云和成雾的可能性,影响大气辐射收支,导致环境温度和植物生长速率的改变以及沾污材料。
对气溶胶的研究,无论对于大气化学、云和降水物理学、大气光学、大气电学、大气辐射学、气候学、环境医学或者生态学等学科来说,都有重要意义。但气溶胶化学组成的研究仅是开始,还有待于今后发展。
气溶胶的现实应用
工业:气溶胶可以加快燃烧速率和充分利用燃料,喷雾干燥可提高产品质量,已广泛用于医药工业与洗衣粉的生产;气溶胶灭火技术就是近几十年发展起来的灭火技术,并成为哈龙灭火产品的代替物之一,也是应用在工民建消防领域的利器。
气溶胶灭火技术烟火技术和超微颗粒技术发展的结晶。在不断的发展过程中,逐渐自我完善,在用于灭火救援时呈现出越来越好的优越性能。
农业:农药的喷洒可提高药效、降低药品的消耗;利用气溶胶进行人工降雨,可大大改善旱情。
国防:当激光在大气中传输时,大气中的各类气体分子和气溶胶粒子都会对激光产生吸收和散射,进而影响激光在大气中的能量分布。
在各类引起激光衰减的因素中,对激光传输能量损耗最大、传输特性影响最为强烈的是大气气溶胶粒子的散射、吸收和衰减效应。
如在激光通信技术领域,众多实验结果表明,大气信道的影响己经成为制约无线激光通信技术发展的最大挑战,严重时大气的衰减甚至可达100dB,这极大的降低了探测端接收光信号的信噪比,进而导致通信距离下降及通信质量变差。
在军事国防领域,大气散射的影响和作用则更加致命,在激光武器、激光测距、激光雷达、激光制导等应用中,大气气溶胶所导致的大气散射会使光束向四面八方发散,严重破坏激光的定向性和能量集中的特性,从而导致定向激光传输的作用距离缩短激光能量降低,严重时甚至造成打击失效。
因此研究气溶胶的吸收和散射特征,可以得到激光衰减效应及其物理规律,在国防上,可以用来制造信号弹和遮蔽烟幕。
更多关于自然现象及对于自然现象的应用内容请关注自然标签或自然常识专题查看。